RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского университета. Естественнонаучная серия // Архив

Вестн. СамГУ. Естественнонаучн. сер., 2015, выпуск 3(125), страницы 21–28 (Mi vsgu463)

Эта публикация цитируется в 5 статьях

Математика

О почти нильпотентных многообразиях в классе коммутативных метабелевых алгебр

С. П. Мищенкоa, О. В. Шулежкоb

a Ульяновский государственный университет, 432017, Российская Федерация, г. Ульяновск, ул. Льва Толстого, 42
b Ульяновский государственный педагогический университет им. И.Н. Ульянова, 432700, Российская Федерация, г. Ульяновск, пл. 100-летия со дня рождения В. И. Ленина, 4

Аннотация: При изучении линейных алгебр с точки зрения выполняющихся в них тождеств интерес вызывают тождественные соотношения, следствиями которых является тождество нильпотентности. Хорошо известны теорема Нагаты–Хигмана, в которой утверждается, что над полем нулевой характеристики ассоциативная алгебра с ниль условием ограниченного индекса является нильпотентной, а также результат Е. И. Зельманова о нильпотентности алгебры Ли, в которой выполняется тождество энгелевости.
Совокупность линейных алгебр, в которых выполняется фиксированный набор тождеств, следуя А. И. Мальцеву, называют многообразием, которое называется почти нильпотентным, если само оно не является нильпотентным, но каждое его собственное подмногообразие нильпотентно.
В статье в случае нулевой характеристики основного поля доказано, что для любого натурального числа $m$ существует коммутативное метабелево почти нильпотентное многообразие, экспонента которого равна $m$.

Ключевые слова: линейная алгебра, многообразие алгебр, почти нильпотентное многообразие.

УДК: 512.554

Поступила в редакцию: 11.03.2015



Реферативные базы данных:


© МИАН, 2024