Поволжская государственная академия физической культуры, спорта и туризма, 420138, Российская Федерация, г. Казань, ул. Деревня Универсиады, 35
Аннотация:
В данной статье для уравнения смешанного типа с сингулярным коэффициентом исследуется задача Келдыша с неполными граничными данными. На основании свойства полноты системы собственных функций одномерной спектральной задачи установлен критерий единственности. Решение построено в виде суммы ряда Фурье–Бесселя. При обосновании равномерной сходимости ряда возникла проблема малых знаменателей. При некоторых ограничениях на данные задачи найдена оценка об отделенности от нуля малого знаменателя с соответствующей асимптотикой, которая позволила доказать равномерную сходимость ряда и его производных до второго порядка включительно и теорему существования в классе регулярных решений.
Ключевые слова:уравнение смешанного типа, сингулярный коэффициент, задача Келдыша, спектральный метод, ряд Фурье–Бесселя, равномерная сходимость, единственность, существование.