Аннотация:
В статье рассматривается численное исследование модели нелинейной диффузии в круге. Уравнение нелинейной диффузии моделирует процесс изменения потенциала концентрации вязкоупругой жидкости, фильтрующейся в пористой среде. Данное уравнение относится к полулинейным уравнениям соболевского типа, которые составляют обширную область неклассических уравнений математической физики. Показаны существование и единственность слабого обобщенного решения задачи Шоуолтера–Сидорова для уравнения нелинейной диффузии. Разработан алгоритм численного решения задачи в круге на основе модифицированного метода Галеркина, и приведен результат вычислительного эксперимента.
Ключевые слова:уравнение нелинейной диффузии, численное моделирование, метод Галеркина, уравнения соболевского типа, задача Шоуолтера–Сидорова, слабое обобщенное решение, монотонные операторы, метод монотонности.