Аннотация:
В статье приведены приближенные аналитические и численные решения класса нелинейных задач на собственные значения, возникающих при исследовании поля напряжений вблизи вершины трещины для плоского деформированного состояния в материале со степенными определяющими уравнениями в условиях смешанного нагружения. Асимптотическое решение нелинейной задачи на собственные значения построено с помощью метода возмущений (метода малого параметра), в соответствии с которым разложения механических величин осуществляются по малому параметру, представляющему собой разность между собственным числом, отвечающим нелинейной задаче, и собственным числом, соответствующим линейной "невозмущенной” задаче. Наряду с функцией напряжений Эри в ряд по малому параметру раскладывается искомая функция и показатель нелинейности материала. Показано, что метод малого параметра является эффективным методом решения нелинейных задач на собственные значения, возникающих в нелинейной механике разрушения. Приводится сравнение результатов асимптотического и численного решений задачи для различных значений параметра смешанности нагружения и показателя нелинейности материала.
Ключевые слова:нелинейная задача на собственные значения, метод возмущений (метод малого параметра), асимптотика напряжений и деформаций в окрестности вершины трещины, смешанное нагружение образца с трещиной, степенной определяющий закон, спектр собственных значений.