RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского университета. Естественнонаучная серия // Архив

Вестн. СамГУ. Естественнонаучн. сер., 2015, выпуск 6(128), страницы 27–39 (Mi vsgu516)

Математика

Интегральное представление решения задачи Рикьера для полигармонического уравнения в $N$-мерном шаре

Е. В. Бородачева, В. Б. Соколовский

Самарский государственный университет, 443011, Российская Федерация, г. Самара, ул. Акад. Павлова, 1

Аннотация: Для $k+1$-гармонического уравнения в $n$-мерном шаре найден явный вид решения задачи Рикьера — задачи о нахождении в этом шаре решения этого уравнения по заданным на границе шара значениям искомого решения $u$ и степеней лапласиана от первой до $k$-й включительно от $u$.
В первой части приводится точная постановка рассматриваемой задачи, формулируется основной результат (вид решения ее), а также указывается идея его доказательства.
Во второй части вводятся семейства некоторых дифференциальных и интегральных операторов в пространстве гармонических в шаре функций, используемые при доказательстве основного результата; устанавливается ряд свойств этих операторов.
Содержание третьей части составляет доказательство основного результата. Оно основано на использовании свойств операторов, введенных во второй части.

Ключевые слова: дифференциальные уравнения, полигармоническое уравнение, полигармонические функции, бигармоническое уравнение, краевые задачи, задача Рикьера для полигармонического уравнения.

УДК: 517.956.223

Поступила в редакцию: 28.05.2015



Реферативные базы данных:


© МИАН, 2024