Аннотация:
Рассматривается начально-краевая задача с динамическим граничным условием для гиперболического уравнения в прямоугольнике. Динамическое граничное условие представляет собой соотношение, в которое помимо
значений производных искомого решения по пространственным переменным входят производные первого порядка по переменной времени. Основной результат статьи состоит в обосновании разрешимости поставленной задачи. Доказано существование единственного обобщенного решения. Доказательство базируется на полученных в работе априорных оценках, методе Галёркина и свойствах пространств Соболева.