Аннотация:
В статье рассматривается краевая задача с нелокальными динамическими условиями для гиперболического уравнения. Особенностью краевых условий является присутствие в них производных по переменной времени как первого, так и второго порядков. Кроме того, краевые условия являются нелокальными, а именно, они представляют собой соотношения, связывающие значения производных на разных частях границы. Подобные задачи возникают при изучении колебаний стержня с учетом эффекта демпфирования и при наличии точечных масс. В работе доказано существование единственного обобщенного решения. Доказательство базируется на полученных априорных оценках и методе Галеркина.
Ключевые слова:нелокальная задача, динамические граничные условия, гиперболическое уравнение, обобщенное решение, априорные оценки, эффекта демпфирования, производная второго порядка, метод Галеркина.