Аннотация:
В статье рассматривается начально-краевая задача с динамическим нелокальным граничным условием для псевдогиперболического уравнения четвертого порядка в прямоугольнике. Динамическое нелокальное граничное условие представляет собой соотношение, в которое помимо значений искомого решения и его производных по пространственным переменным входят производные второго порядка по переменной времени, а также интеграл от искомого решения. Эта задача может служить математической моделью процессов, связанных с продольными колебаниями толстого короткого стержня, и демонстрирует нелокальный подход к изучаемому явлению. Основной результат статьи состоит в обосновании разрешимости поставленной задачи. Доказано существование единственного обобщенного решения. Доказательство базируется на полученных в работе априорных оценках, методе Галеркина и свойствах пространств Соболева.