Аннотация:
Многомерные гиперболо-эллиптические уравнения описывают важные физические, астрономические и геометрические процессы. Известно, что колебания упругих мембран в пространстве по принципу Гамильтона можно моделировать многомерными вырождающимися гиперболическими уравнениями. Полагая, что в половине изгиба мембрана находится в равновесии, из принципа Гамильтона также получаем вырождающиеся эллиптические уравнения. Следовательно, колебания упругих мембран в пространстве можно моделировать в качестве многомерных вырождающихся гиперболо-эллиптических уравнений. При изучении этих приложений возникает необходимость получения явного представления исследуемых краевых задач. Автором ранее изучена задача Дирихле для многомерных гиперболо-эллиптических уравнений, где показана однозначная разрешимость этой задачи, существенно зависящей от высоты рассматриваемой цилиндрической области. Однако задача Дирихле в цилиндрической области для многомерных вырождающихся гиперболо-эллиптических уравнений ранее не изучена.
В данной статье исследована задача Дирихле для одного класса вырождающихся многомерных гиперболо-эллиптических уравнений. При этом существование и единственность решения зависят от высоты рассматриваемой цилиндрической области и от вырождения уравнения. Получен также критерий единственности регулярного решения.
Ключевые слова:корректность, задача Дирихле, цилиндрическая область, вырождение функции Бесселя, критерии.
УДК:517.956
Поступила в редакцию: 15.01.2019 Принята в печать: 20.02.2019