Аннотация:
В статье рассматривается нелокальная задача с интегральным условием для псевдогиперболического уравнения четвертого порядка в прямоугольнике. В уравнении присутствует как смешанная производная, так и производная четвертого порядка по пространственной переменной. Интегральное условие является условием первого рода, которое приводит к трудностям в исследовании разрешимости задачи. Одним из успешных методов преодоления трудностей такого плана является переход от условий первого рода к условиям второго рода. В статье доказана эквивалентность условий первого рода условиям второго рода для данной задачи. Получены условия на коэффициенты уравнения и входные данные, гарантирующие существование единственного обобщенного решения поставленной задачи. Доказательство теоремы базируется на возможности эквивалентного перехода от условия первого рода, свойствах пространств Соболева, априорных оценках и методе Галеркина.
Ключевые слова:уравнения соболевского типа, начально-краевая задача, нелокальные условия, псевдогиперболическое уравнение, уравнения Рэлея–Бишопа, уравнение четвертого порядка, нелокальные граничные условия, интегральные условия, обобщенное решение, уравнение в частных производных четвертого порядка.
УДК:
519.999
Поступила в редакцию: 24.12.2018 Принята в печать: 18.01.2019