Аннотация:
В статье доказаны структурные теоремы для пространств параболических форм уровней, которые кратны минимальным уровням для функций МакКея.
Существует 28 эта-произведений с мультипликативными коэффициентами Фурье целого веса. Их называют функциями МакКея. Пусть $f(z)$ — такая функция. Она лежит в пространстве $S_l(\Gamma_0(N),\chi)$ для минимального уровня $N.$
Любое пространство уровня $N$ допускает точное рассечение функцией $f(z).$ Функция $f(z)$ является также параболической формой для кратных уровней. В этом случае точное рассечение уже не имеет места, возникают дополнительные пространства. В статье найдены условия на дивизор для функций, делящихся на $f(z),$ изучена структура дополнительных пространств.
Размерности пространств вычисляются по формуле Коэна–Остерле, порядки модулярных форм в параболических вершинах — по формуле Биаджиоли.
Ключевые слова:модулярные формы, параболические формы, эта-функция Дедекинда, параболические вершины, ряды Эйзенштейна, структурные теоремы, формула Коэна–Остерле, формула Биаджиоли.