Аннотация:
Как хорошо известно, конструкция Густавссона — Петре, использующая понятие безусловной сходимости в банаховых пространствах, позволяет получить важный класс интерполяционных функторов. В данной статье определена новая близкая конструкция, основанная на применении так называемой случайной безусловной сходимости. Найдены необходимые и достаточные условия на порождающую функцию, при которых она определяет интерполяционный функтор на категории банаховых пар. Показано, что вычисление последнего на паре пространств Орлича приводит к “естественной” интерполяционной теореме. Кроме того, получены условия, гарантирующие совпадение этого функтора с соответствующим функтором Густавссона — Петре, а также с методом Кальдерона — Лозановского.
Ключевые слова:интерполяционное пространство, интерполяционный функтор, функтор Густавссона — Петре, метод Кальдерона — Лозановского, функции Радемахера, банахова решетка, неравенство Хинчина, пространство Орлича.
УДК:517.982.27
Поступила в редакцию: 06.03.2019 Принята в печать: 15.03.2019