Аннотация:
Известно, что общая теория многомерных сингулярных интегральных операторов по всему пространству $E_n$ построена С. Г. Михлиным. Показано, что в двумерном случае, если символ оператора не обращается в нуль, то имеет место теория Фредгольма. Что касается операторов по ограниченной области, то здесь граница области существенно влияет на разрешимость таких операторных уравнений. В статье рассматриваются двумерные сингулярные операторы с непрерывными коэффициентами по ограниченной области, которые широко применяются во многих задачах теории дифференциальных уравнений в частных производных. В связи с этим представляет интерес установление критериев нетеровости таких операторов в виде явных условий по их коэффициентам. В зависимости от $2m + 1$ компонентов связанности определяются необходимые и достаточные условия нетеровости таких операторов и дается формула для вычисления индекса. Полученные результаты применяются к задаче Дирихле для общих эллиптических систем четвертого порядка.