Аннотация:
Настоящая статья посвящена исследованию вопросов разрешимости некоторых краевых задач для нового класса дифференциальных уравнений с инволюцией. В пространстве $R^{n} $ вводится отображение $Sx=-x$. С помощью этого отображения вводится нелокальный аналог оператора Лапласа, а также граничный оператор с наклонной производной. Изучены краевые задачи, обобщающие известную задачу с наклонной производной. Доказаны теоремы о существовании и единственности решения исследуемых задач. В классе Гельдера изучена также гладкость решения. Используя известные утверждения о решениях краевой задачи с наклонной производной для классического уравнения Пуассона, найдены точные порядки гладкости решения исследуемой задачи.