Аннотация:
В данной статье рассмотрен класс эллиптических уравнений второго порядка дивергентной структуры с неравномерным степенным вырождением. Подход, используемый в настоящей статье, основан на том, что скорости вырождения собственных чисел матрицы $|| a_{ij}(x)||$ (функции $\lambda_i(x)$) являются не функциями необычной нормы $|x|$, а некоторого анизотропного расстояния $| x|_{{a}^{-}}$. Предполагается, что задача Дирихле для таких уравнений разрешима в классическом смысле при любой непрерывной граничной функции в любой нормальной области $\Omega$.
Для слабых решений получены оценки вблизи граничной точки решений задачи Дирихле, функции Грина для неравномерно вырождающихся эллиптических уравнений второго порядка.