Аннотация:
Рассматривается задача о деформировании под действием равномерного давления круговой пластины, сопряженной с массивным основанием, при этом условие сопряжения пластины с основанием моделируется использованием граничных условий типа обобщенной упругой заделки, т. е. связи изгибающего момента и усилий на краю пластины со смещениями и углом поворота посредством матрицы податливости. Основной целью работы является исследование влияния упругости заделки на упругий отклик пластины. Решение задачи получено в постановке линейной теории пластин, теории мембран в приближении однородности продольных усилий и теории Феппля — фон Кармана, также в приближении предположения однородности продольных усилий. Значения коэффициентов матрицы податливости получены с помощью метода конечных элементов для вспомогательной задачи и сравнены со значениями коэффициентов, полученных для близких задач аналитическими методами. Численные результаты получены для пластины из алюминия на кремниевом основании. Проведено сравнение полученного решения с решением, полученным для условия жесткой заделки для всех трех использованных моделей. Показано, что в случае больших прогибов (несколько толщин пластины) учет податливости заделки становится существенным.
Ключевые слова:тонкая пластина, граничные условия для пластин, упругая заделка, матрица податливости.
Поступила в редакцию: 15.01.2024 Исправленный вариант: 21.02.2024 Принята в печать: 28.02.2024