Аннотация:
Давней проблемой, возникающей при построении математического аппарата квантовой механики, является необходимость работы с неограниченными операторами. Поскольку пространство ядерных операторов является предсопряженным для алгебры всех ограниченных операторов, можно считать состояниями квантовой системы ядерные операторы, а наблюдаемыми считать ограниченные операторы. В этом случае взятие следа для произведения ядерного оператора (квантового состояния) и ограниченного оператора (квантовой наблюдаемой) дает среднее значение наблюдаемой в фиксированном состоянии квантовой системы. Существование такого среднего для неограниченных операторов не гарантировано. Если мы хотим определить пространство наблюдаемых, включающее такие естественно возникающие неограниченные операторы, как координата и импульс, для которых всегда определены средние значения, следует рассматривать пространство состояний меньшее, чем все ядерные операторы. Недавно такой подход был математически точно реализован в гильбертовом пространстве $\mathcal{H} = L^2(\mathbb{R}^N)$. В качестве пространства состояний было выбрано так называемое пространство операторов Шварца, снабженное системой полунорм и являющееся пространством Фреше. Операторы Шварца представляют из себя интегральные операторы, чьи ядра являются функциями, принадлежащими обычному пространству Шварца. Дуальное пространство к пространству операторов Шварца нужно считать пространством квантовых наблюдаемых, и оно действительно включает такие стандартные наблюдаемые, как полиномы от произведений операторов координаты и импульса. В предлагаемой работе мы переносим данный подход на симметричное пространство Фока $\mathcal{H}=F(\mathfrak{H})$ над бесконечномерным сепарабельным гильбертовым пространством $\mathfrak{H}$. Мы вводим пространство операторов Шварца в $F(\mathfrak{H})$ и определяем, какие из стандартных операторов квантового белого шума принадлежат пространству, дуальному к пространству операторов Шварца.
Ключевые слова:пространство операторов Шварца, симметричное пространство Фока, квантовый белый шум.