RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2021, том 8, выпуск 1, страницы 37–48 (Mi vspua130)

Эта публикация цитируется в 1 статье

МАТЕМАТИКА

О методе Монте-Карло для решения больших систем линейных обыкновенных дифференциальных уравнений

С. М. Ермаков, М. Г. Смиловицкий

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: В статье рассматривается применение метода Монте-Карло к решению задачи Коши для больших систем линейных дифференциальных уравнений. В первой части статьи дается краткий обзор уже известных результатов применения метода для решения интегральных уравнений Фредгольма. В основной части статьи разбирается применение подхода к системе линейных ОДУ, которая приводится к эквивиалентной системе интегральных уравнений Вольтерра. Это позволяет снять ограничения, связанные со сходимостью мажорантного процесса. Формулируются следующие ключевые теоремы. Теорема 1 указывает требуемые условия согласования, которым должны отвечать переходная и начальная плотности распределения, инициирующие соответствующую цепь Маркова, для которой выполняется равенство между математическим ожиданием оценки и интересующим нас функционалом. Теорема 2 формулирует выражение для дисперсии оценки, в то время как теорема 3 указывает параметры цепи Маркова, минимизирующие значение дисперсии для оценки функционала. В работе приводятся доказательства всех трех теорем. В практической части предложенный метод применяется к системе линейных ОДУ, описывающих замкнутую систему массового обслуживания из десяти условных машин и семи условных рабочих. Решение приводится как для системы с постоянной матрицей коэффициентов, так и для системы с переменной матрицей, где в зависимости от времени меняется интенсивноcть выхода машин из строя. Также произведено сравнение решения методом Монте-Карло с решением методом Рунге - Кутта. Все результаты отражены в таблицах.

Ключевые слова: метод Монте-Карло, системы ОДУ, интегральное уравнение, задачи массового обслуживания, оптимальная плотность, несмещенная оценка, статистическое моделирование.

УДК: 519.245

MSC: 65C05

Поступила в редакцию: 03.06.2020
Исправленный вариант: 27.07.2020
Принята в печать: 17.09.2020

DOI: 10.21638/spbu01.2021.104


 Англоязычная версия: Vestnik St. Petersburg University, Mathematics, 2021, 8:3, 28–38


© МИАН, 2024