RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2020, том 7, выпуск 4, страницы 636–648 (Mi vspua152)

МАТЕМАТИКА

О задаче Коши, поставленной на границе области определения обыкновенного дифференциального уравнения

В. В. Басов, Ю. А. Ильин

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Работа посвящена вопросу существования у обыкновенного дифференциального уравнения первого порядка решения задачи Коши с начальной точкой, расположенной на границе области определения уравнения. Такая постановка отличается от принятой в классической теории, где начальная точка всегда является внутренней. Ставится задача отыскания таких условий на правую часть уравнения и границу области определения, которые бы гарантировали как существование, так и отсутствие решения у данной граничной задачи Коши. В предыдущей статье, посвященной этому же вопросу, авторы для решения поставленной задачи использовали стандартный метод ломаных Эйлера и описали все случаи, когда с помощью этого метода удается получить желаемый ответ. Однако метод ломаных, имея определенные достоинства (конструктивность, возможность использования компьютера), требует для своей реализации, чтобы и уравнение, и область его определения удовлетворяли определенным ограничениям, что неизбежно сужает класс допустимых уравнений. В настоящей статье мы предпринимаем попытку максимально расширить полученные ранее результаты и для этой цели используем совершенно другой подход. Исходное уравнение доопределяется таким образом, что граничная задача становится обычной внутренней задачей Коши, для которой применяется стандартная теорема Пеано. Для ответа на вопрос о том, будет ли решение модифицированной задачи Коши являться решением исходной граничной задачи, применяются так называемые теоремы сравнения и дифференциальные неравенства. Данная статья представляет собой самостоятельное исследование, не опирающееся на нашу предыдущую работу. Ради цельности изложения для ранее полученных результатов даются новые доказательства, которые основываются на новом подходе. В результате мы расширили класс рассматриваемых уравнений, сняли прежние требования выпуклости и гладкости граничных кривых, добавили случаи, которые невозможно было рассмотреть с помощью метода ломаных. Проделанная работа закрывает определенный пробел в литературе по вопросу существования или отсутствия решений у граничной задачи Коши.

Ключевые слова: задача Коши, граница области определения, граничная начальная точка, верхнее и нижнее решения задачи Коши, интегральная воронка, теоремы сравнения.

УДК: 517.911

MSC: 34A12

Поступила в редакцию: 23.03.2020
Исправленный вариант: 03.07.2020
Принята в печать: 18.07.2020

DOI: 10.21638/spbu01.2020.406


 Англоязычная версия: Vestnik St. Petersburg University, Mathematics, 2020, 7:4, 424–433


© МИАН, 2024