Аннотация:
Данная статья является шестой в цикле работ, посвященном двумерным однородным кубическим системам. В ней рассматривается случай, когда однородный векторный многочлен в правой части системы не имеет общего множителя. Множество таких систем разбивается на классы линейной эквивалентности, в каждом из которых на основании определенным образом введенных принципов выделяется простейшая система - нормальная форма третьего порядка, задаваемая матрицей коэффициентов своей правой части, которая называется канонической формой (КФ). Каждая КФ имеет свою структуру расположения ненулевых элементов, их определенную нормировку и каноническое множество допустимых значений для ненормированных элементов, относящее КФ в выбранному классу эквивалентности. Помимо классификации для каждой КФ приводятся: a) условия на коэффициенты исходной системы, b) линейные неособые замены, преобразующие правую часть системы при этих условиях в выбранную КФ, c) получаемые значения ненормированных элементов КФ. Предложенная классификация в первую очередь создавалась для получения всех возможных структур обобщенных нормальных форм систем с КФ в невозмущенной части. В статье приводится еще одно приложение полученной классификации, связанное с нахождением для КФ фазовых портретов в круге Пуанкаре.