Аннотация:
В данной статье рассматриваются различные расширения локальных полей. Для произвольного конечного расширения K поля p-адических чисел с помощью известной теории Любина - Тейта возможно описать максимальное абелево расширение $K^{ab}/K$ и соответствующую группу Галуа. Она представляется как прямое произведение групп, полученных с помощью максимального неразветвленного расширения K и вполне разветвленного расширения, полученного с использованием корней некоторых эндоморфизмов формальных групп Любина - Тейта. Мы рассматриваем так называемые обобщенные формальные группы Любина - Тейта и расширения, возникающие при добавлении к рассматриваемому полю корней их эндоморфизмов. Используя тот факт, что над неразветвленным конечным расширением $T_m$ степени $m$ поля $K$ правильным образом выбранная обобщенная формальная группа совпадает с классической, оказалось возможным получить группу Галуа расширения $(T_m)^{ab}/K$. Главным результатом работы является явное описание группы Галуа расширения $(K^{ur})^ {ab}/K$, где $K^{ur}$ - это максимальное неразветвленное расширение поля $K$. Аналогичные методы также были применены к изучению разветвленных расширений поля $K$.