Аннотация:
Рассматривается двумерная периодическая система дифференциальных уравнений с двумя гиперболическими периодическими решениями. Предполагается, что в пересечении устойчивых и неустойчивых многообразий неподвижных точек лежат гетероклинические решения, точнее, предполагается наличие гетероклинического контура. Исследуется случай, когда устойчивые и неустойчивые многообразия пересекаются нетрансверсально в точках хотя бы одного гетероклинического решения. Существуют различные способы нетрансверсального пересечения устойчивого многообразия с неустойчивым многообразием в точках гетероклинического решения. Ранее в работах Л. П. Шильникова, С. В. Гонченко, Б. Ф. Иванова и других авторов предполагалось, что в точках нетрансверсального пересечения устойчивого и неустойчивого многообразия имеется касание не более чем конечного порядка. Из работ этих авторов следует, что существуют системы, у которых в окрестности гетероклинического контура имеются устойчивые периодические решения. В данной работе изучаются гетероклинические контуры в предположении, что в точках нетрансверсального пересечения устойчивого и неустойчивого многообразия в точках гетероклинического решения касание не является касанием конечного порядка. Показано, что в окрестности такого гетероклинического контура может лежать счетное множество периодических решений, характеристические показатели которых отделены от нуля.