RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2023, том 10, выпуск 1, страницы 36–46 (Mi vspua219)

МАТЕМАТИКА

О свойствах некоторых методов обращения преобразования Лапласа

А. В. Лебедева, В. М. Рябов

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Рассматривается задача обращения интегрального преобразования Лапласа, относящаяся к классу некорректных задач. Интегральные уравнения сводятся к плохо обусловленным системам линейных алгебраических уравнений, неизвестными в которых являются либо коэффициенты разложения в ряд по специальным функциям, либо приближенные значения искомого оригинала в ряде точек. Описан метод обращения с помощью специальных квадратурных формул наивысшей степени точности и указаны характеристики точности и устойчивости этого метода. Построены квадратурные формулы обращения, приспособленные для обращения длительных и медленно протекающих процессов линейной вязкоупругости. Предложен метод деформации контура интегрирования в формуле обращения Римана-Меллина, приводящий задачу к вычислению определенных интегралов и позволяющий получить оценки погрешности. Описан метод определения возможных точек разрыва оригинала и вычисления величины скачка в этих точках.

Ключевые слова: преобразование Лапласа, обращение преобразования Лапласа, система линейных алгебраических уравнений, интегральные уравнения первого рода, квадратурные формулы, некорректные задачи, плохо обусловленные задачи, метод регуляризации.

УДК: 519.61

MSC: 65F22

Поступила в редакцию: 04.08.2022
Исправленный вариант: 22.08.2022
Принята в печать: 08.09.2022

DOI: 10.21638/spbu01.2023.104


 Англоязычная версия: Vestnik St. Petersburg University, Mathematics, 2023, 56:1, 27–34


© МИАН, 2024