Аннотация:
В рамках градиентной теории упругости при конечных деформациях сформулированы условия сильной эллиптичности уравнений равновесия. В данной модели плотность энергии деформации является функцией первого и второго градиентов вектора места (градиента деформации). Свойство эллиптичности накладывает определенные ограничения на касательные модули. Оно также тесно связано с устойчивостью в малом, понимаемой как положительная определенность второй вариации функционала потенциальной энергии. В статье рассмотрена первая краевая задача - с краевыми условиями типа Дирихле. Для одномерной деформации определены достаточные и необходимые условия устойчивости в малом, которые представляют собой два неравенства для упругих модулей.
Ключевые слова:градиентная теория упругости, сильная эллиптичность, устойчивость в малом.