RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2023, том 10, выпуск 3, страницы 545–553 (Mi vspua259)

МАТЕМАТИКА

О вероятностях больших уклонений комбинаторных сумм независимых случайных величин, удовлетворяющих условию Линника

А. Н. Фролов

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Получены новые результаты об асимптотическом поведении вероятностей больших уклонений комбинаторных сумм независимых случайных величин, удовлетворяющих условию Линника. Найдена зона, в которой вероятности больших уклонений эквивалентны хвосту стандартного нормального закона. Ранее подобные результаты были получены автором при выполнении условия Бернштейна. При доказательстве новых результатов использован метод усечений.

Ключевые слова: вероятности больших уклонений, комбинаторная центральная предельная теорема, комбинаторная сумма.

УДК: 519.2

MSC: 60F05

Поступила в редакцию: 02.01.2023
Принята в печать: 16.02.2023

DOI: 10.21638/spbu01.2023.308



© МИАН, 2024