RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2022, том 9, выпуск 3, страницы 480–494 (Mi vspua28)

Эта публикация цитируется в 1 статье

МАТЕМАТИКА

Метод преобразования Фурье для уравнений в частных производных: формулы представления решений задачи Коши

В. И. Гишларкаев

Чеченский государственный университет, Российская Федерация, 364093, Грозный, ул. Шерипова, 32

Аннотация: В работе предлагается метод решения задачи Коши для линейных уравнений в частных производных с переменными коэффициентами специального вида, позволяющий после применения (обратного) преобразования Фурье переписать исходную задачу как задачу Коши для уравнений в частных производных первого порядка. Полученная задача решается методом характеристик и к ее решению применяется (прямое) преобразование Фурье. А для этого необходимо знать решение задачи Коши для уравнения первого порядка во всей области определения. Это приводит к требованию компактности носителя (обратного) преобразования Фурье начальной функции исходной задачи, и для описания класса начальных функций необходимо воспользоваться теоремами типа Пэли - Винера -Шварца о Фурье-образах, в том числе и обобщенных функций. Приведено представление решений в виде преобразования Фурье от некоторой (обобщенной) функции, определяемой по начальной функции. При этом выписан общий вид эволюционного уравнения, приводящий при применении описанного метода к рассмотрению однородного уравнения первого порядка и выведена формула решения задачи Коши в этом общем случае. Также выписан общий вид уравнения, приводящий к рассмотрению неоднородного уравнения первого порядка, и выведена формула решений для него. Частными случаями этих уравнений являются известные уравнения, встречающиеся при описании различных процессов в физике, химии, биологии.

Ключевые слова: преобразование Фурье, обобщенные функции с компактным носителем, метод характеристик.

УДК: 517.955

MSC: 35C15, 35C99

Поступила в редакцию: 18.12.2021
Исправленный вариант: 14.02.2022
Принята в печать: 03.03.2022

DOI: 10.21638/spbu01.2022.309


 Англоязычная версия: Vestnik St. Petersburg University, Mathematics, 2022, 9:3, 480–494

Реферативные базы данных:


© МИАН, 2024