RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2024, том 11, выпуск 1, страницы 115–130 (Mi vspua283)

МАТЕМАТИКА

Характеристики сходимости и устойчивости некоторых методов обращения преобразования Лапласа

А. В. Лебедева, В. М. Рябов

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Рассматривается задача обращения интегрального преобразования Лапласа, относящаяся к классу некорректных задач. Интегральные уравнения сводятся к плохо обусловленным системам линейных алгебраических уравнений, неизвестными в которых являются либо коэффициенты разложения в ряд по специальным функциям, либо приближенные значения искомого оригинала в ряде точек. Рассмотрены различные методы обращения и указаны их характеристики точности и устойчивости, которые необходимо знать при выборе метода обращения для решения прикладных задач. Построены квадратурные формулы обращения, приспособленные для обращения длительных и медленно протекающих процессов линейной вязкоупругости. Предложен методд еформации контура интегрирования в формуле обращения Римана-Меллина, приводящий задачу к вычислению определенных интегралов и позволяющий получить оценки погрешности.

Ключевые слова: преобразование Лапласа, обращение преобразования Лапласа, интегральные уравнения первого рода, квадратурные формулы, некорректные задачи, плохо обусловленные задачи.

УДК: 519.61

MSC: 65F22

Поступила в редакцию: 03.02.2023
Исправленный вариант: 02.05.2023
Принята в печать: 31.08.2023

DOI: 10.21638/spbu01.2024.107



© МИАН, 2024