RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2022, том 9, выпуск 1, страницы 113–125 (Mi vspua46)

Эта публикация цитируется в 6 статьях

МЕХАНИКА

Моделирование скорости колебательной релаксации с помощью методов машинного обучения

М. А. Бушмакова, Е. В. Кустова

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Цель исследования - разработка эффективного алгоритма решения задач неравновесной газовой динамики в приближении детальной поуровневой колебательнохимической кинетики. Обсуждается оптимизация расчета скорости колебательной релаксации с использованием алгоритмов машинного обучения. Поскольку традиционные методы расчета требуют большого числа операций, затрат времени и памяти, предлагается вместо прямых вычислений прогнозировать скорость релаксации. Рассмотрены алгоритмы K-ближайших соседей и градиентного бустинга на основе гистограмм. Алгоритмы были обучены на наборах данных, полученных с использованием двух классических моделей коэффициентов скорости реакций: модели нагруженного гармонического осциллятора и моделиШварца-Славского-Герцфельда. Обученные алгоритмы использовались для решения задачи пространственно однородной релаксации смеси $O_2-O$. Проведено сравнение точности и времени расчета разными методами. Показано, что используемые алгоритмы позволяют с хорошей точностью аппроксимировать значения релаксационных членов и приближенно решить систему уравнений для макропараметров. На основании полученных данных можно рекомендовать использование методов машинного обучения в задачах неравновесной газовой динамики с детальной колебательно-химической кинетикой. Обсуждаются пути дальнейшей оптимизации рассмотренных методов.

Ключевые слова: неравновесные течения, колебательная кинетика, машинное обучение.

УДК: 533.6.011

MSC: 76L05, 82C40, 82C70

Поступила в редакцию: 31.07.2021
Исправленный вариант: 31.07.2021
Принята в печать: 02.09.2021

DOI: 10.21638/spbu01.2022.111


 Англоязычная версия: Vestnik St. Petersburg University, Mathematics, 2022, 9:1, 87–95


© МИАН, 2024