Аннотация:
Рассматривается задача обращения интегрального преобразования Лапласа, относящаяся к классу некорректных задач. Интегральные уравнения сводятся к плохо обусловленным системам линейных алгебраических уравнений (СЛАУ), неизвестными в которых являются либо коэффициенты разложения в ряд по смещенным многочленам Лежандра, либо приближенные значения искомого оригинала в ряде точек. Первый шаг сведения к СЛАУ состоит в применении квадратурных формул, доставляющих минимальные значения числа обусловленности СЛАУ. Для получения надежного решения системы используют методы регуляризации. Общей стратегией является использование стабилизатора Тихонова или его модификаций. Приведен вариант метода регуляризации систем с матрицами осцилляционного типа, существенно уменьшающий обусловленность задачи по сравнению с классической схемой Тихонова. Приведен способ фактического построения специальных квадратур, приводящих к задачам с осцилляционными матрицами.
Ключевые слова:система линейных алгебраических уравнений, интегральные уравнения первого рода, некорректные задачи, плохо обусловленные задачи, число обусловленности, осцилляционные матрицы, метод регуляризации.