RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2021, том 8, выпуск 4, страницы 593–599 (Mi vspua72)

Эта публикация цитируется в 4 статьях

МАТЕМАТИКА

О регуляризации решения интегральных уравнений первого рода с помощью квадратурных формул

А. В. Лебедева, В. М. Рябов

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Рассматриваются плохо обусловленные системы линейных алгебраических уравнений (СЛАУ) и интегральные уравнения первого рода, относящиеся к классу некорректных задач. Сюда же относится задача обращения интегрального преобразования Лапласа, применяемого для решения широкого класса математических задач. Интегральные уравнения сводятся к СЛАУ со специальными матрицами. Для получения надежного решения используют методы регуляризации. Общей стратегией является использование стабилизатора Тихонова или его модификаций, либо представление искомого решения в виде ортогональной суммы двух векторов, один из которых определяется устойчиво, а для поиска второго необходима некая процедура стабилизации. В настоящей статье рассматриваются методы численного решения СЛАУ с положительно определенной симметричной матрицей или с матрицей осцилляционного типа с использованием регуляризации, приводящие к СЛАУ с уменьшенным числом обусловленности. Указан метод сведения задачи обращения интегрального преобразования Лапласа к СЛАУ с обобщенными матрицами Вандермонда осцилляционного типа, регуляризация которых снижает плохую обусловленность системы.

Ключевые слова: система линейных алгебраических уравнений, интегральные уравнения первого рода, некорректные задачи, плохо обусловленные задачи, число обусловленности, метод регуляризации.

УДК: 519.61

MSC: 65F22

Поступила в редакцию: 26.04.2021
Исправленный вариант: 16.06.2021
Принята в печать: 17.07.2021

DOI: 10.21638/spbu01.2021.404


 Англоязычная версия: Vestnik St. Petersburg University, Mathematics, 2021, 8:4, 361–365


© МИАН, 2025