Аннотация:
Рассматривается класс дискретных функций распределения, чьи характеристические функции отделены от нуля, т. е. их модуль больше некой положительной константы на всей числовой оси. Данный класс достаточно широк: содержит дискретные безгранично делимые функции распределения, функции решетчатых распределений с характеристическими функциями без нулей на числовой прямой, а также функции распределения со скачком, большим $1/2$. В недавней работе авторами было показано, что характеристические функции, соответствующие элементам этого класса, допускают представление типа Леви-Хинчина с немонотонной спектральной функцией, что включает данный класс в число так называемых квази-безгранично делимых функций распределения. Также для последовательностей из данного класса на основе указанных представлений были получены предельные теоремы и теоремы о компактности со сходимостью по вариации. В данной заметке получены аналогичные результаты о сходимости и компактности, но с несколько ослабленной сходимостью по вариации. Изменения типа сходимости значительно расширяют применимость этих результатов.
Ключевые слова:характеристические функции, представление типа Леви — Хинчина, квази-безгранично делимые законы, сходимость по вариации, относительная компактность, стохастическая компактность.