RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2013, выпуск 3, страницы 102–111 (Mi vspui140)

Прикладная математика

On a strong graphical law of large numbers for random semicontinuous mappings

V. I. Norkina, R. J.-B. Wetsb

a 03187, Kiev, V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine
b CA 95616-5270, Department of Mathematics, University of California, Davis, USA

Аннотация: In the paper we establish a strong graphical law of large numbers (LLN) for random outer semicontinuous mappings, providing conditions when graphs of sample average mappings converge to the graph of the expectation mapping with probability one. This result extends a known LLN for compact valued random sets to random uniformly bounded (by an integrable function) set valued mappings. We give also an equivalent formulation for the graphical LLN by means of some fattened mappings. The study is motivated by applications of the set convergence and the graphical LLN in stochastic variational analysis, including approximation and solution of stochastic generalized equations, stochastic variational inequalities and stochastic optimization problems. The nature of these applications consists in sample average approximation of the inclusion mappings, application of the graphical LLN and obtaining from here a graphical approximation of the set of solutions. Bibliogr. 23.

Ключевые слова: random sets, random set-valued mappings, strong law of large numbers, graphical convergence.

УДК: 519.214

Поступила: 21 марта 2013 г.

Язык публикации: английский



© МИАН, 2024