Аннотация:
В статье рассмотрены векторные пространства над полем вычетов по модулю $2$. Эти пространства представляют интерес в связи с широким их использованием в теории обыкновенных графов, теории кодирования и других областях знаний, в частности при изучении модулярных систем. Данные векторные пространства обладают рядом особенностей. Так, например, упрощается исследование линейной зависимости и независимости совокупности векторов. Вводится понятие $1$-зависимости совокупности векторов, которое применяется при исследовании подпространств и их ортогональных дополнений, при решении систем линейных уравнений. Рассмотрена связь разбиения совокупности векторов на минимальные $1$-зависимые системы и фундаментальной системы решений определенной системы линейных уравнений. Доказаны необходимое и достаточное условия наличия ненулевого пересечения линейного подпространства и его ортогонального дополнения. Библиогр. 10 назв.
Ключевые слова:векторное пространство, поле вычетов по модулю $2$.