RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2014, выпуск 2, страницы 36–48 (Mi vspui184)

Эта публикация цитируется в 1 статье

Прикладная математика

Инвариантные преобразования в первом методе Ляпунова

В. С. Ермолин

Санкт-Петербургский государственный университет, 199034, Санкт-Петербург, Российская Федерация

Аннотация: Работа содержит развитие теоретических основ первого метода Ляпунова. На основе анализа соотношений между характеристичными числами функциональных матриц, их строк, столбцов и определителей дается описание семейства инвариантных преобразований линейных систем дифференциальных уравнений. В п. 1 приводятся как известные, так и новые соотношения, связывающие характеристичные числа функциональных матриц. Эти соотношения используются для доказательства утверждений, которые делаются в других пунктах. В п. 2 описывается семейство абсолютно правильных матриц, которое служит базой для формирования инвариантных преобразований правильных систем. Показывается, что матрицы Ляпунова принадлежат данному семейству. Приводятся примеры матриц из указанного семейства, не являющиеся матрицами Ляпунова. В п. 3 анализируются свойства матриц, правильных по столбцам, и матриц, правильных по строкам. Доказываются теоремы об их связи с абсолютно правильными матрицами. В п. 4 вводится понятие инвариантного преобразования. Устанавливается, что свойство правильности системы эквивалентно тому, чтобы существовала нормальная фундаментальная матрица, правильная по столбцам. Такое свойство позволило перенести на правильные системы результаты исследований п. 3. В частности, доказывается теорема о структуре нормальной фундаментальной матрицы правильной системы, позволяющей решать вопросы, связанные с приводимостью исходной правильной системы к системе уравнений с постоянными коэффициентами при помощи инвариантных преобразований. Библиогр. 4 назв.

Ключевые слова: первый метод Ляпунова, инвариантные преобразования, характеристичные числа, правильные системы, преобразование Ляпунова, абсолютно правильная матрица, нормальная фундаментальная система, приводимые системы.

УДК: 517.926.4

Поступила: 19 декабря 2013 г.



© МИАН, 2024