Аннотация:
В любой дифференциальной игре величина программного максимина является гарантированным выигрышем первого игрока. Долгое время, по причине ее простого геометрического смысла в играх преследования и сложности реализации метода Айзекса, эта величина была предметом исследований, целью которых был поиск условий, позволяющих утверждать, что при их выполнении она является также и тем проигрышем, более которого заведомо мог бы не проиграть и второй игрок. Эти условия принято называть условиями регулярности, а игры, в которых они выполняются, — регулярными играми. Таким образом, условия регулярности гарантируют, что величина программного максимина есть значение дифференциальной игры. В истоках метода программных итераций, представляющего собой негладкую версию метода динамического программирования, лежат исследования нерегулярных дифференциальных игр, в которых величина программного максимина значением игры не является. Вместе с тем развитие метода программных итераций показало, что его возможности существенно шире. В частности, он может быть положен в основу построения теории дифференциальных игр в целом. Еще одна иллюстрация этого положения приводится в представляемой статье, где на основе результатов метода программных итераций, теоремы о минимаксе для выпукло-вогнутых функций и теоремы об измеримом селекторе многозначного отображения предложено простое обоснование известного условия регулярности в линейной игре сближения в заданный момент времени. Библиогр. 14 назв.
Ключевые слова:дифференциальные игры, игры с нулевой суммой, регулярные игры, метод программных итераций.