RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2011, выпуск 1, страницы 106–115 (Mi vspui23)

Процессы управления

Об устойчивости и стабилизации механических систем с нелинейными поглотителями энергии

А. Ю. Александровa, А. А. Косовb

a Санкт-Петербургский государственный университет, факультет прикладной математики — процессов управления
b Институт динамики систем и теории управления Сибирского отделения РАН

Аннотация: Рассматриваются механические системы, состоящие из базовой структуры и нелинейного поглотителя энергии, взаимодействие между которыми осуществляется посредством существенно нелинейных позиционных сил. Нелинейный характер взаимодействия обеспечивает интенсивную перекачку энергии вынужденных колебаний, создаваемых в базовой структуре внешними возмущениями, в поглотитель энергии, где колебания гасятся на демпфирующих устройствах. Для эффективной работы такого основанного на пассивном управлении способа гашения колебаний требуется обеспечить асимптотическую устойчивость равновесия в замкнутой системе. В статье с помощью метода декомпозиции определяются достаточные условия асимптотической устойчивости положения равновесия. Установлено, что во многих случаях асимптотическая устойчивость может быть выявлена путем изучения изолированных подсистем существенно меньшей размерности. Для систем с неполным измерением вектора обобщенных координат изучаются задачи стабилизации положения равновесия за счет нелинейной обратной связи, использующей только измеряемые координаты и дополнительные вспомогательные переменные. Эти дополнительные переменные можно рассматривать как координаты для присоединяемой механической системы, тем самым стабилизация фактически реализуется за счет присоединения нелинейного поглотителя энергии. В качестве примера приложения полученных результатов рассмотрена задача стабилизации положения равновесия трехмассовой системы с единственной измеряемой координатой. Показано, что при любых значениях параметров системы (массы грузов, жесткости пружин) можно обеспечить асимптотическую устойчивость положения равновесия за счет присоединения посредством нелинейной пружины дополнительного груза с демпфером. Библиогр. 11 назв.

Ключевые слова: механические системы, устойчивость, стабилизация, функции Ляпунова, декомпозиция.

УДК: 531.36


Принята к печати: 14 октября 2010 г.



© МИАН, 2024