Аннотация:
Для точного исследования матриц перехода для движения частиц в сложных магнитных полях разработан метод расчета трехмерных полей и декомпозиции мультиполей, основанный на дифференциальной алгебре. Он может применяться к любой модели магнита, состоящей из линейных проводов, и провода используются для представления катушек индуктивности и железных частей с помощью так называемого метода изображений. Такая модель существует для большинства как современных сверхпроводящих магнитов, так других. Следует подчеркнуть, что это практически единственный возможный путь извлечения мультиполей и их производных и, следовательно, аналитически матриц перехода высокого порядка для движения частиц. Также рассматриваются несколько смежных тем, таких как вычислительная сложность задачи, максвеллификация полей, важность исчезающих завитков и т. д., и их приложения к очень точным вычислениям магнитных полей, включая краевые поля. Библиогр. 19 назв. Ил. 4. Табл. 6.
Ключевые слова:уравнения Максвелла, закон Био–Савара, мультиполи, дифференциальная алгебра.