RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2015, выпуск 4, страницы 56–71 (Mi vspui267)

Информатика

Оптимизационный алгоритм расчета плотности тока эмиссии

В. В. Алцыбеев

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7/9

Аннотация: В настоящее время задача изучения параметров импульсных источников, генерирующих электронные пучки, вызывает большой интерес. Например, такие источники могут использоваться для облучения мишеней и обработки поверхностей. Ток эмиссии в импульсных источниках, как правило, ограничен пространственным зарядом. Итерационный метод является наиболее эффективным инструментом при расчете динамики пучков в импульсных источниках. По сравнению с наиболее широко используемым методом частиц в ячейках итерационный метод значительно быстрее и экономичнее, поскольку требует существенно меньшего числа макрочастиц при расчетах. Для решения задачи ограничения тока пространственным зарядом существует несколько методов, которые можно объединить в две основные группы. Методы первой группы основаны на применении одномерных аналитических решений Чайлда или Ленгмюра для плоской, цилиндрической или сферической геометрий. Эти методы широко распространены в силу их простоты и низкой вычислительной сложности. Однако в случае криволинейности эмиттирующей поверхности применение данных методов может привести к существенным ошибкам. Методы другой группы основаны на достижении условия равенства нулю нормальной компоненты электрического поля на эмиттере. Такие методы позволяют решать задачи с криволинейными областями эмиссии, но требуют значительного объема вычислений. В настоящей работе предлагается модификация одного метода из второй группы, позволяющая значительно снизить объем требуемых вычислений в двумерном и двумерном осесимметричном случаях. Задача нахождения тока, ограниченного пространственным зарядом, формализуется как задача многомерной оптимизации. Для ее решения предлагается подход, основанный на аппроксимации функции плотности тока эмиссии с помощью полинома и применения многомерного модифицированного метода Ньютона. Библиогр. 15 назв. Ил. 11. Табл. 1.

Ключевые слова: итерационный метод в электростатике, ток, ограниченный пространственным зарядом, многомерная оптимизация, многомерный метод Ньютона.

УДК: 519.6

Поступила: 10 сентября 2015 г.



Реферативные базы данных:


© МИАН, 2024