RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2016, выпуск 3, страницы 39–52 (Mi vspui297)

Эта публикация цитируется в 2 статьях

Прикладная математика

Covariant description of phase space distributions

[Ковариантное описание распределений в фазовом пространстве]

O. I. Drivotin

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

Аннотация: Сформулирована концепция фазового пространства для частиц, движущихся в 4-мерном пространстве-времени. Дано определение плотности распределения частиц как дифференциальной формы. Уравнения Лиувилля и Власова записаны в тензорном виде с использованием таких тензорных операций как перенос Ли и производная Ли. Представленный подход применим как в нерелятивистском, так и в релятивистском случаях. Следует подчеркнуть, что данный подход не содержит понятий фазового объема и функции распределения. Ковариантный подход позволяет использовать любые системы координат для описания распределений частиц. В некоторых случаях использование специальных координат дает возможность строить аналитические решения. Кроме того, такой подход удобен для описания вырожденных распределений, например распределения Капчинского–Владимирского, хорошо известного в теории пучков заряженных частиц. Он также может быть применен для описания распределений частиц в искривленном пространстве-времени. Библиогр. 25 назв.

Ключевые слова: уравнение Лиувилля, уравнение Власова, фазовое пространство, фазовая плотность, плотность распределения частиц, самосогласованное распределение, вырожденное распределение.

УДК: 517.958

Поступила: 15 февраля 2016 г.
Принята к печати: 26 мая 2016 г.

Язык публикации: английский

DOI: 10.21638/11701/spbu10.2016.304



Реферативные базы данных:


© МИАН, 2024