Эта публикация цитируется в
4 статьях
Прикладная математика
Решение задачи рациональной интерполяции с использованием ганкелевых полиномов
А. Ю. Утешевa,
И. И. Боровой a Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9
Аннотация:
Работа посвящена задаче построения рационального интерполянта
$$ r(x)=p(x)/q(x),~\ \{r(x_j)=y_j\}_{j=1}^N,~ \{x_j,y_j\}_{j=1}^N \subset \mathbb C , \ \{p(x),q(x)\} \subset \mathbb C[x] \, . $$
В развитие результата К. Якоби интерполянт представляется в виде отношения ганкелевых полиномов, т. е. полиномов вида $ \mathcal H_{K}(x)=\det [c_{i+j-1}-c_{i+j-2}x]_{i,j=1}^{K} $. Порождающая последовательность
$ \{c_k\}_{k\in \mathbb N} $ выбирается в виде $ \{\sum_{j=1}^N x_j^ky_j/W^{\prime}(x_j) \}_{k\in \mathbb N} $ для полинома
$ q(x) $ и $ \{\sum_{j=1}^N x_j^k/(y_jW^{\prime}(x_j)) \}_{k\in \mathbb N} $ для полинома
$ p(x) $; здесь
$ W(x)=\prod_{j=1}^N(x-x_j) $. Приводятся условия разрешимости задачи и несократимости получаемой дроби. В дополнение к формальному построению решения в детерминантной форме в настоящей статье предложена процедура эффективного вычисления соответствующих ганкелевых полиномов. Она основана на тождестве Якоби–Йоахимшталя, связывающем ганкелевы полиномы трех последовательных порядков линейным соотношением вида
$$ \alpha \mathcal H_K(x)-(x+\beta) \mathcal H_{K-1}(x)+ 1/\alpha \mathcal H_{K-2}(x) \equiv 0 $$
при некоторых константах
$ \{\alpha,\beta \} \subset \mathbb C $. Доказательство этого соотношения также приводится в статье вместе с дополнительным обсуждением вырожденного случая
$ \alpha=0 $. На основании изложенных результатов может быть развернута процедура вычисления ганкелевых полиномов, рекурсивная по их порядку. Такая возможность позволяет получить не только интерполянт с фиксированными степенями полиномов
$ p(x) $ и
$ q(x) $, но и все семейство интерполянтов при различных комбинациях степеней:
$ \deg p + \deg q \le N-1 $. Библиогр. 12 назв.
Ключевые слова:
рациональная интерполяция, ганкелевы матрицы и полиномы, алгоритм Берлекампа–Месси.
УДК:
519.65 Поступила: 30 июня 2016 г.Принята к печати:
29 сентября 2016 г.
DOI:
10.21638/11701/spbu10.2016.403