Аннотация:
Исследуется классическая задача стационарной стабилизации по состоянию линейной стационарной управляемой системы. Рассматриваются эффективные, легко алгоритмизируемые методы построения регуляторов управляемых систем: метод В. И. Зубова и метод П. Бруновски. Указываются наиболее удачные их модификации, облегчающие построение линейного регулятора. Предлагается новая модификация построения линейного регулятора с использованием преобразования матрицы исходной системы в блочно-диагональный вид. Данная модификация содержит все преимущества как метода В. И. Зубова, так и метода П. Бруновски и позволяет свести задачу с многомерным управлением к задаче стабилизации совокупности независимых подсистем со скалярным управлением для каждой подсистемы.
Ключевые слова:стабилизация движений, линейный регулятор, канонические формы управляемости.