Аннотация:
В работе предлагается аналог метода Е. Роте (метод полудискретизации по временной переменной) для построения сходящихся разностных схем при анализе устойчивости слабого решения начально-краевой задачи параболического типа с распределенными параметрами на графе в классе суммируемых функций. Этот метод позволяет исходную начально-краевую задачу привести к изучению краевой задачи в слабой постановке для уравнений эллиптического типа с распределенными параметрами на графе. В силу специфики указанного метода устойчивость слабого решения понимается в терминах спектрального критерия устойчивости (счетной устойчивости по Нейману), который устанавливает устойчивость решения по отношению к каждой гармонике обобщенного ряда Фурье слабого решения или отрезка этого ряда. Таким образом, выявлена еще одна возможность, кроме метода Фаэдо—Галеркина, построения приближений к искомому решению начально-краевой задачи, анализа его устойчивости и путь доказательства теоремы существования слабого решения исходной задачи. Используемый подход применим к отысканию достаточных условий устойчивости слабых решений других начально-краевых задач с более общими граничными условиями: в них эллиптические уравнения рассматриваются с краевыми условиями второго или третьего типа. Дальнейший анализ возможен при отыскании условий, при которых определяется устойчивость по Ляпунову. Изложенный подход можно использовать при анализе задач оптимального управления, а также задач стабилизации и устойчивости дифференциальных систем с запаздыванием. Представленный метод конечных разностей даст возможность проводить аппроксимацию состояний параболической системы, анализа их устойчивости, при численной реализации и алгоритмизации задач оптимального управления.