RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2021, том 17, выпуск 2, страницы 120–130 (Mi vspui483)

Эта публикация цитируется в 1 статье

Прикладная математика

Изгиб ребристой пластины при сложном нагружении

Д. П. Голоскоковa, А. В. Матросовb

a Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича, Российская Федерация, 193232, Санкт-Петербург, пр. Большевиков, 22
b Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Рассматривается задача изгиба прямоугольной пластины, подкрепленной перекрестной системой ребер жесткости. На пластину, кроме поперечной нагрузки, действуют передаваемые через ребра силы в ее плоскости. Получено аналитическое решение граничной задачи для разрешающего дифференциального уравнения относительно нормального прогиба пластины, которое описывает деформацию прямоугольной пластины, подкрепленной ребрами жесткости. Решение представлено в виде рядов по комбинациям регулярных и специальных разрывных функций, которые быстро сходятся, и приводит к простому вычислительному алгоритму. Влияние ребер учитывается в уравнении в виде дополнительных слагаемых, содержащих множители с дельта-функцией. Такой подход дает возможность освободиться от ряда предположений, касающихся взаимодействия пластины с подкрепляющими ее элементами. Использование аппарата обобщенных функций при моделировании объектов указанного типа упрощает граничные условия (отсутствуют условия сопряжения различных элементов конструкции), но при этом усложняются дифференциальные уравнения: задача сводится к так называемым частично вырожденным уравнениям. Разработка аналитических методов, позволяющих получать точные решения дифференциальных уравнений такого типа, и внедрение их в расчeтную практику являются одной из актуальных задач механики объектов с нарушенной регулярностью.

Ключевые слова: пластина, ребра жесткости, математическая модель, численно-аналитические методы, специальные разрывные функции, функция Дирака, функция Хэвисайда, ряды Фурье, ортогональные ряды.

УДК: 539.3

MSC: 35C10, 74E10, 74B05

Поступила: 4 февраля 2021 г.
Принята к печати: 5 апреля 2021 г.

DOI: 10.21638/11701/spbu10.2021.202



© МИАН, 2024