Аннотация:
В настоящей работе методом начальных функций (МНФ) решена задача изгиба защемленной по всем четырем сторонам ортотропной пластинки, находящейся под воздействием нормальной равномерно распределенной по ее поверхности нагрузки. Решение получено в виде экспоненциального ряда с неизвестными коэффициентами. Алгоритм метода таков, что на двух противоположных сторонах граничные условия (равенство нулю перемещений и углов поворота) выполнены точно, тогда как на паре двух других противоположных сторон граничные условия удовлетворяются с произвольной степенью точности методом коллокаций. Все исследования проводились с помощью системы Maple, позволяющей работать с вещественными числами с произвольной мантиссой. Расчеты с длинной мантиссой преодолевают один из основных недостатков МНФ: вычислительную неустойчивость его алгоритма, возникающую при определенных параметрах задачи. Определены области вычислительной устойчивости полученного решения, а также изучено напряженно-деформированное состояние в окрестностях угловых точек пластины. Показано стремление к нулю значений моментов и перерезывающих сил при приближении к углам пластины с однократным изменением знака.
Ключевые слова:ортотропная пластинка, изгиб тонкой ортотропной пластинки, защемленная по контуру пластинка, метод начальных функций, компьютерная алгебра, система Maple.