Аннотация:
Во многих приложениях динамические математические модели содержат подсистемы, обладающие общими частями. В указанных случаях прибегают к расширению фазового пространства исходной динамической системы с последующим его сужением до размеров фазового пространства исходной системы. Расширение фазового пространства приводит исходную динамическую систему к системе, у которой у всех подсистем нет общих частей. При этом рассматриваемые динамические системы могут иметь положения равновесия в классическом понимании, а также так называемые «частичные» положения равновесия. Для реализации процесса расширения–сужения необходимо знать условия, при выполнении которых это возможно осуществлять. Указанные условия составляют основу принципа включения. В данной работе найдены условия, при выполнении которых удается проводить изучение устойчивоподобных свойств «частичного» положения равновесия динамической системы, заданной в виде системы нелинейных обыкновенных дифференциальных уравнений, относительно всех и части фазовых переменных с использованием принципа включения. На примере системы дифференциальных уравнений с однородной правой частью порядка $\mu=3,5,\dots$ продемонстрирована техника исследования устойчивоподобных свойств ее движений с применением идей и методов принципа включения. Приведен пример системы, для которой не удается доказать асимптотическую устойчивость без использования принципа включения. Библиогр. 16 назв.
Ключевые слова:динамические системы, принцип включения, перекрывающиеся декомпозиции, устойчивость, однородные системы.