Аннотация:
B статье рассматриваются задачи математического программирования с негладкими ограничениями типа равенств, задаваемыми квазидифференцируемыми функциями. С применением техники верхних выпуклых аппроксимаций, разработанной Б. Н. Пшеничным, получены необходимые условия экстремума в таких задачах. Благодаря тому, что для квазидифференцируемой функции можно построить целые семейства верхних выпуклых аппроксимаций, удалось уточнить знаки множителей Лагранжа и тем самым более полно охарактеризовать точки минимума в таких экстремальных задачах. Рассматривается также простейшая задача вариационного исчисления со свободной правой частью в предположении, что левый конец траектории начинается на границе выпуклого множества. При некоторых достаточных условиях уточнено условие трансверсальности на левом конце траектории.