RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник российских университетов. Математика // Архив

Вестник российских университетов. Математика, 2020, том 25, выпуск 130, страницы 165–182 (Mi vtamu179)

Научные статьи

Условия минимума гладкой функции на границе квазидифференцируемого множества

Р. А. Хачатрян

Ереванский государственный университет

Аннотация: B статье рассматриваются задачи математического программирования с негладкими ограничениями типа равенств, задаваемыми квазидифференцируемыми функциями. С применением техники верхних выпуклых аппроксимаций, разработанной Б. Н. Пшеничным, получены необходимые условия экстремума в таких задачах. Благодаря тому, что для квазидифференцируемой функции можно построить целые семейства верхних выпуклых аппроксимаций, удалось уточнить знаки множителей Лагранжа и тем самым более полно охарактеризовать точки минимума в таких экстремальных задачах. Рассматривается также простейшая задача вариационного исчисления со свободной правой частью в предположении, что левый конец траектории начинается на границе выпуклого множества. При некоторых достаточных условиях уточнено условие трансверсальности на левом конце траектории.

Ключевые слова: верхняя выпуклая аппроксимация, квазидифференцируемая функция, субдифференциал, шатeр.

УДК: 519.6

Поступила в редакцию: 18.03.2020

DOI: 10.20310/2686-9667-2020-25-130-165-182



© МИАН, 2025