Аннотация:
Рассмотрена плоская задача управления по быстродействию с круговой индикатрисой и целевым множеством с гладкой границей, имеющей конечные разрывы производных второго порядка от координатных функций. Изучены псевдовершины — особые точки границы цели, порождающие сингулярность у функции оптимального результата. Для нестационарных псевдовершин с разрывной кривизной найдены односторонние маркеры, значения которых нужны при аналитическом и численном построении ветвей сингулярного множества. Доказано, что маркеры лежат на границе спектра – области возможных значений. Один из них равен нулю, другой принимает несобственное значение $-\infty.$ При их вычислении применены асимптотические разложения нелинейного уравнения, выражающего условие трансверсальности. На основе маркеров также получены точные формулы крайних точек ветвей сингулярного множества. Предъявлен пример задачи управления, в котором найденных с помощью развиваемых методов конструктивных элементов (псевдовершины, ее маркеров и крайней точки сингулярного множества) оказывается достаточно, чтобы на всей области рассмотрения построить в явном аналитическом виде сингулярное множество и функцию оптимального результата.