RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник российских университетов. Математика // Архив

Вестник российских университетов. Математика, 2022, том 27, выпуск 137, страницы 58–79 (Mi vtamu247)

Эта публикация цитируется в 5 статьях

Научные статьи

О некорректных задачах, экстремалях функционала Тихонова и регуляризованных принципах Лагранжа

М. И. Суминab

a ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»
b ФГАОУ ВО "Нижегородский государственный университет им. Н.И. Лобачевского"

Аннотация: Задача поиска нормального решения операторного уравнения первого рода на паре гильбертовых пространств является классической в теории некорректных задач. В соответствии с теорией регуляризации ее решения аппроксимируются экстремалями функционала Тихонова. С точки зрения теории задач на условный экстремум эквивалентной классической некорректной задаче является задача минимизации функционала, равного квадрату нормы элемента, с операторным (т. е. задаваемым оператором с бесконечномерным образом) ограничением-равенством. В статье обсуждается возможность регуляризации принципа Лагранжа (ПЛ) в указанной задаче на условный экстремум. Эта регуляризация представляет собою такую трансформацию ПЛ, которая превращает его в универсальное средство устойчивого решения некорректных задач в терминах обобщенных минимизирующих последовательностей (ОМП) и сохраняет основанное на конструкциях классической функции Лагранжа его «общее структурное устройство». Трансформированный ПЛ «содержит» классический аналог в качестве своего предельного варианта при стремлении номеров элементов ОМП к бесконечности. Обсуждаются как неитеративный, так и итеративный варианты регуляризации ПЛ. Каждый из них приводит к устойчивому генерированию ОМП в исходной задаче на условный экстремум из экстремалей регулярного функционала Лагранжа, взятого при значениях двойственной переменной, вырабатываемой соответствующей процедурой регуляризации двойственной задачи. В заключение статьи обсуждается взаимосвязь экстремалей функционалов Тихонова и Лагранжа в рассматриваемой классической некорректной задаче.

Ключевые слова: некорректная задача, линейное операторное уравнение, регуляризирующий алгоритм, метод регуляризации Тихонова, условная минимизация, операторное ограничение-равенство, правило множителей Лагранжа, обобщенная минимизирующая последовательность, итеративная регуляризация, двойственная регуляризация, регуляризованный принцип Лагранжа.

УДК: 517.9

MSC: 47A52, 49K27, 90C25, 90C46

Поступила в редакцию: 15.12.2021

DOI: 10.20310/2686-9667-2022-27-137-58-79



© МИАН, 2024