О существовании и единственности положительного решения краевой задачи для одного нелинейного функционально-дифференциального уравнения дробного порядка
Аннотация:
В настоящей статье рассматривается двухточечная краевая задача для одного нелинейного функционально-дифференциального уравнения дробного порядка со слабой нелинейностью на отрезке $[0,1]$ с нулевыми условиями Дирихле на границе. Краевая задача сводится к эквивалентному интегральному уравнения в пространстве непрерывных функций. С помощью специальных топологических средств (использующих геометрические свойства конусов в пространстве непрерывных функций, утверждения о неподвижных точках монотонных и вогнутых операторов) доказано существование единственного положительного решения рассматриваемой задачи. Приведен пример, иллюстрирующий выполнение достаточных условий, обеспечивающую однозначную разрешимость поставленной задачи. Полученные результаты являются продолжением исследований автора (см. [Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 2021, т. 194, с. 3–7]), посвященных вопросам существования и единственности положительных решений краевых задач для нелинейных функционально-дифференциальных уравнений.