Аннотация:
Рассматриваются два типа семейств множеств широко понимаемого измеримого пространства: ультрафильтры (максимальные фильтры) и максимальные сцепленные системы. Получающиеся при этом множества ультрафильтров и максимальных сцепленных систем оснащаются каждое парой сравнимых топологий (по смыслу «волмэновской» и «стоуновской»), в результате чего реализуются два битопологических пространства, одно из которых оказывается подпространством другого; точнее, ультрафильтры являются максимальными сцепленными системами, а тогда совокупность последних образует объемлющее битопологическое пространство. С использованием топологических конструкций устанавливаются некоторые характеристические свойства ультрафильтров и (в меньшей степени) максимальных сцепленных систем (речь идет о необходимых и достаточных условиях максимальности фильтров и сцепленных систем).